An esoteric programming language, io ho scritto le poesie.
This repository has been archived on 2024-08-20. You can view files and clone it, but cannot push or open issues or pull requests.
Go to file
2015-03-12 15:25:15 +01:00
cmake Adding template using decl to compile features check. 2015-03-12 15:25:15 +01:00
examples Adding fibonacci example. 2015-03-11 00:52:53 +01:00
src Remove unused headers. 2015-03-11 00:58:31 +01:00
.gitignore Adding QTCreator *.user to ignore list. 2014-12-10 23:02:24 +01:00
CMakeLists.txt Merge branch 'homebrew' of https://github.com/agatti/monicelli into agatti-homebrew 2015-03-10 15:43:55 +01:00
LICENSE.txt Adding GPLv3 license. 2014-11-29 00:47:50 +01:00
README.md Fix YAML-cpp minimum version required. 2015-03-11 00:50:08 +01:00
Specification.txt Add a note to Specification.txt to remark that it's not up-to-date. 2014-12-02 13:15:40 +01:00

Monicelli

Monicelli is an esoterical programming language based on the so-called "supercazzole" from the movie Amici Miei, a masterpiece of the Italian comedy.

There is no way to translate a "supercazzola" to English, so if you don't speak Italian, I'm afraid you won't understand. I'm really sorry for you :)

Compilation

You will need bison version >= 3.0 (Bison 2.5 works but requires manual intervention), flex >= 2.5, LLVM >= 3.5, Boost >= 1.48, YAML-cpp >= 0.5 and any C++11 compiler. The build scripts are generated using CMake, version >= 2.8.

A typical Makefile-based build workflow would be:

mkdir build/
cd build/
cmake ..
make

During the Makefile generation, the build script will test the compiler for all the required features.

If your tools are installed in non-standard locations (e.g. Bison Brew on Mac OS X), you can alter the search path with:

PATH=/path/to/bison cmake ..

If you can't really upgrade to Bison 3.0, a patch for Bison 2.5 is provided in cmake/bison2.patch. You will have to manually apply it with:

patch -p 1 < cmake/bison2.patch

However note that compilation with Bison 2.5 is not supported and the patch might be removed in the future.

###Building with LLVM on Debian/Ubuntu Debian Testing and Ubuntu >= 14.04 distribute a LLVM 3.5 development package which is broken (see 1 and 2).

Luckly, LLVM.org directly provides an APT repo which works fine. http://llvm.org/apt/ have all the relevant info for installing the repo. After that, the package we need is llvm-3.5-dev.

This is only necessary for compilation, Debian/Ubuntu LLVM runtime libs and utilities work just fine.

Usage

###LLVM frontend Monicelli emits LLVM bitcode in its default configuration. A typical compilation workflow would be:

$ ./mcc example.mc
$ llc example.bc
$ cc example.s libmcrt.a -o example

In particular, note that the Monicelli runtime library must be compiled in or linked to use all of the I/O functions. Also note the use of the llc utility, which is provided by LLVM, to produce native assembler from LLVM bitcode.

Please be aware that the Monicelli standard library depends on the C stdlib, although this dependency is available on virtually any platform you might dream of compiling Monicelli on.

As such, llvm utilities are needed for compiling. Only the "low level" utilities (opt and llc) are needed, not the whole Clang/Clang++ suite. Usually, the relevant package goes under the name llvm.

A C compiler is used to simplify the assembling and linking step, but it could be skipped altogether with a small effort. If you want to try ;)

mcc only performs minimal optimizations in order to ensure readibility when disassembling with llvm-dis. However, you might want to optimize the code using opt LLVM utility:

$ opt example.bc | llc -o example.s

in place of the simple llc compilation step. See opt documentation for a comprehensive list of optimizations available.

###C++ transpiler mcc also works as a source to source compiler, which reads Monicelli and outputs a subset of C++. Use the option --c++ or -+ for that.

A good way to learn on the field is comparing the resulting C++ with the input. Well, mostly with the beautified version of the input, *.beauty.mc.

The typical command line would be:

$ ./mcc --c++ examples/primes.mc
$ c++ primes.cpp -o primes
$ ./primes

Language overview

The original specification can be found in Specification.txt, and was initially conceived by my colleagues and dear friends Alessandro Barenghi, Michele Tartara and Nicola Vitucci, to whom goes my gratitude.

Unfortunately, their proposal was meant to be a joke and is not complete. This project is an ongoing effort to produce a rigorous specification for the language and implement a compiler, which implies filling gaps and ambiguities with sensible choices.

Statements have no terminator, i.e. no semicolon ; or the like. A single statement can be split across multiple lines and multiple statements can be grouped on the same line. However, keywords consisting of multiple space-separed words cannot be split on multiple lines.

A comma might be inserted after each statement, if it fits the sentence ;)

Accented letters can be replaced by the non-accented letter followed by a backtick `, although the use of the correct Italian spelling is strongly encouraged for maximizing the antani effect.

###Get started! For those of you who want to get to the code ASAP, the examples/ folder contains a set of programs covering most of the features of the language.

Main

The entry point of the program (the "main") is identified by the phrase:

Lei ha clacsonato

which marks the beginning of the supercazzola (i.e. of the program).

A value can be returned by using the the following statement:

vaffanzum <expression>!

optionally, no value might be returned with:

vaffanzum!

Expressions

The usual operators are given, but spelled as words to best fit in sentences. They are directly mapped on usual operators as follows:

Form Maps to
più +
meno -
per *
diviso /
maggiore di >
minore di <
maggiore uguale a/di >=
minore uguale a/di <=

So 2 più 4 means 2 + 4.

When evaluating binary expressions whose operands have different types, the type of the result will be the less restrictive between the two. This ensures that no loss takes place when evaluating an expression.

###Binary shift

Binary shift operators have a slighly different syntax:

<what> con scappellamento a <direction> per <bits>

which is equivalent to what >> bits or what << bits, depending on the direction, which is specified as follows:

Phrase Direction
destra right
sinistra left

as you might have noticed, those are simply the translation in Italian of "left" and "right". For instance:

antani con scappellamento a sinistra per 2

maps to antani << 2.

It goes without saying, other expression can be used instead of numbers. Also, the usual precedence rules apply.

Braces are not implemented.

Variables

A variable name can contain numbers, upper and lower case character and must not start with a number (the usual rules, that's it).

A variable might be prefixed with an article to fit a sentence. The compiler does not check concordance with the following name, but accepts any article of the Italian language: il, lo, la, i, gli, le, un, una dei, delle, l', un'. For instance, cappello and il cappello refer to the same variable.

Consequently, the articles above cannot be used as variable names.

###Assignment

A value can be assigned to a variable with the following statement:

<varname> come fosse <expression>

the alternate spelling come se fosse can be used as well.

The <expression> initializer is casted to the declared type of the variable, even if the cast will cause some loss. This feature can be (ab)used to introduce C-style casts too.

###Declaration

Variables can be declared in any scope. There are 5 variable types, which are directly mapped on C++/C99 types as follows:

Type name Mapped C type Size
Necchi int 64bit
Mascetti char 8bit
Perozzi float 32bit
Melandri bool -
Sassaroli double 64bit

A variable is declared with the following statement:

voglio <varname>, <type>

an initialization value can be provided:

voglio <varname>, <type> come se fosse <expression>

for instance:

voglio antani, Necchi come se fosse 4

declares a variables called antani of type Necchi (int) and initializes it to 4.

Input/Output

Variables and expressions can be printed with the statement:

<expression> a posterdati

Conversely, a variable might be read from input using:

mi porga <varname>

Loop

There is only one loop construct, equivalent to a C do {} while();, which is defined as follows:

stuzzica
    <statements>
e brematura anche, se <condition>

For example:

voglio antani, Necchi come se fosse 10
stuzzica
    antani come fosse antani meno 1
e brematura anche, se antani maggiore di 0

maps to:

int antani = 10;
do {
    antani = antani - 1;
} while (antani > 0);

brematura might be replaced by its alternate form prematura

Branch

The branch construct encompasses both the features of an if and a switch. The best way to explain it is by comparing its various forms to the corresponding C translation.

This is the general form:

che cos'è <variable>?
    <condition>:
        <statements>
    o magari <condition>:
        <statements>
    o tarapia tapioco:
        <statement>
e velocità di esecuzione

where <condition> might be either a value or a semi-expression, that is an operator followed by any expression. For instance:

che cos'è il genio?
    intuizione:
        genio come se fosse genio meno 1
    o magari intuizione diviso 2:
        genio come se fosse genio più 1
    o magari maggiore di mobiletto per due:
        genio come se fosse genio per 2
    o tarapia tapioco:
        genio come se fosse 2
e velocità di esecuzione

maps to:

if (genio == intuizione) { 
    genio = genio - 1;
} else if (genio == (intuizione / 2)) {
    genio = genio + 1;
} else if (genio > (mobiletto * 2)) {
    genio = genio * 2;
} else {
    genio = 2;
}

The statement can emulate an if () {} else {}:

che cos'è il genio?
    maggiore di mobiletto:
        genio come se fosse 2
    o tarapia tapioco:
        genio come se fosse 0
e velocità di esecuzione

Placing multiple o <condition>: block is similar to a chain of else if in C.

The o tarapia tapioco block can be omitted:

che cos'è il genio?
    maggiore di mobiletto:
        genio come se fosse 2
e velocità di esecuzione

Finally, here is the equivalent of a switch () {}:

che cos'è il genio?
    1:
        genio come se fosse 2
    o magari 2:
        genio come se fosse 7
    o tarapia tapioco:
        genio come se fosse 9
e velocità di esecuzione

where the o tarapia tapioco part is like the default block.

Functions

Note: the alternate spelling supercazzora might be used in place of supercazzola wherever the latter appears.

###Declaration

A function is declared with the blinda la supercazzola statement:

blinda la supercazzola [<type>] <name> [con <param> <type>[, <param> <type>...]] o scherziamo?
    <statements>

Where <type> can be omitted for a void function. For instance:

blinda la supercazzola Necchi antanizzata con alfio Mascetti o scherziamo?
    vaffanzum alfio meno 2!

is a function of type Necchi, taking one argument of type Mascetti. Multiple arguments must be comma-separed, like in:

blinda la supercazzola Necchi antanizzata con alfio Mascetti, barilotto Necchi o scherziamo?
    vaffanzum alfio meno 2!

which is a function of type Necchi, taking two arguments of type Mascetti and Necchi. It maps to:

int antanizzata(char alfio, int barilotto) {
    return alfio - 2;
}

Finally, this:

blinda la supercazzola antanizzata o scherziamo?
    vaffanzum!

is a void function taking no arguments and becomes:

void antanizzata() {
    return;
}

Functions cannot be nested and can be declared before or after the main in any order. mcc will not check that a return statement is always reachable inside a non-void function. Failing to return a value leads to undefined behaviour.

###Invocation

A function is called with the brematurata la supercazzola statement:

brematurata la supercazzola <name> [con <expression>[, <expression>...] o scherziamo?

Functions might be called inside expressions. For instance, this:

antani come se fosse brematurata la supercazzola alfio con barilotto diviso 3 o scherziamo? per 2

maps to:

antani = alfio(barilotto / 3) * 2;

Exceptions

The program might be aborted immediately with the statement:

avvertite don ulrico

there are no arguments.

Assertions

An assertion block will evaluate its expression and trigger an error message if it is found to be 0 (logical false). An assertion is stated as:

ho visto <expression>!

Comments

Any character after bituma is ignored until a line break is encountered. For instance, in:

antani come se fosse 4 bituma, scusi, noi siamo in quattro

, scusi, noi siamo in quattro is ignored.

Comments are useful to fill the "supercazzola" and make it more readable, since any word (including reserved words) can be inserted into it.

###Meta comments

In addition to line comments, there are meta comments. A meta comment starts with an hash sign # and continues until a line break is encountered, as an ordinary comment.

They have a different graphical symbol, which can be immediately spotted inside a long "supercazzola". Also, ordinary comments can and should be used in an improper way to fill the sentence, meta comments provide a mechanism for distiguishing "real" comments.

Reserved words and phrases

The following phrases are currently reserved with no assigned usage. They cannot be used as variable identifiers, even if they do not serve any other purpose in the current language revision.

  • conte
  • scusi noi siamo in
  • con rinforzino